Deret \displaystyle \sum_{n=0}^\infty \frac{\sin n}{n}

Dalam matakuliah Kalkulus 2 kita mempelajari banyak ragam jenis pengujian kekonvergenan deret. Kita mempunyai uji integral, uji banding langsung, uji banding limit dan uji rasio. Untuk deret yang suku-sukunya tidak selalu positif, kita punya deret ganti tanda dan uji deret kekonvergenan mutlak. Dari beberapa uji-uji deret tersebut, sepengetahuan saya tidak ada yang bisa digunakan untuk memeriksa kekonvergenan deret {\displaystyle\sum_{n=1}^\infty \frac{\sin n}{n}}.

Jika kita lihat sepintas, fungsi {\sin x} periodik dan nilainya berayun diantara {-1} dan {1}. Sifat ini mungkin mengingatkan kita dengan uji deret ganti tanda, tapi sayangnya uji deret ganti tanda tidak bisa digunakan disini karena nilai {\sin n} meskipun nilainya ada yang positif dan ada yang negatif, tapi tidak bergantian positif ke negatif dari satu suku ke suku berikutnya.

Berikut adalah uji Dirichlet yang dapat dipergunakan untuk membuktikan bahwa deret {\displaystyle\sum_{n=1}^\infty \frac{\sin n}{n}} merupakan deret yang konvergen. Uji ini merupakan perumuman dari deret ganti tanda.

Teorema  (Uji Dirichlet) Misalkan {a_n} monoton turun, {\displaystyle \lim_{n\rightarrow \infty} a_n=0} dan {\left|\displaystyle\sum_{n=1}^N b_n \right|\leq M} untuk setiap {N}. Maka deret {\displaystyle\sum_{n=1}^\infty a_nb_n } konvergen.

Sebelum kita buktikan, kita akan gunakan uji Dirichlet ini untuk membuktikan bahwa deret {\displaystyle \sum_{n=1}^n \frac{\sin n}{n}} konvergen. Ambil {a_n=\frac{1}{n}} dan {b_n=\sin n}. Jelas bahwa {a_n} monoton turun dan konvergen ke nol. Sekarang perhatikan bahwa

    \begin{align*} 2\sin(1/2)\sum_{n=1}^ N \sin n &=\sum_{n=1}^N 2\sin(1/2)\sin n \\ &=\sum_{n=1}^N \left(\cos(n-\frac12)-\cos(n+\frac12)\right)\\&=\cos(1/2)-\cos(N+\frac12). \end{align*}

Akibatnya

\displaystyle \left|\sum_{n=1}^ N \sin n\right|=\left|\frac{\cos(1/2)-\cos(N+\frac12)}{2\sin(1/2)}\right|\leq \frac{2}{2\sin(1/2)}=\frac{1}{\sin(1/2)}.

Jadi menurut uji Dirichlet kita peroleh bahwa {\displaystyle \sum_{n=1}^\infty \frac{\sin n}{n}} konvergen.

Bukti Uji Dirichlet: Misalkan {B_n:=\sum_{k=1}^n b_k}. Perhatikan bahwa

    \begin{align*} \sum_{n=1}^N B_n(a_n-a_{n+1})&= B_1a_1+\sum_{n=1}^{N-1} B_{n+1}a_{n+1}-\sum_{n=1}^N B_na_{n+1}\\ &=b_1a_1+\left(\sum_{n=1}^{N-1} (B_{n+1}-B_n)a_{n+1}\right) - B_Na_{N+1}\\ &=b_1a_1+\left(\sum_{n=1}^{N-1} b_{n+1}a_{n+1}\right)-B_Na_{N+1}\\ &=\left(\sum_{n=1}^N a_nb_n\right)-B_Na_{N+1}, \end{align*}

yang ekivalen dengan

\displaystyle \sum_{n=1}^N a_nb_n=B_Na_{N+1}+\sum_{n=1}^N B_n(a_n-a_{n+1}).

Karena barisan {\{a_n\}} konvergen ke nol dan {|B_N|\leq M}, maka {B_Na_{N+1}} konvergen ke nol. Sekarang

    \begin{align*} \sum_{n=1}^N |B_n(a_n-a_{n+1})|\leq \sum_{n=1}^N M(a_n-a_{n+1})=Ma_1-Ma_{N+1}\leq Ma_1 \end{align*}

Ini menunjukkan bahwa deret {\sum_{n=1}^\infty B_n(a_n-a_{n+1})} konvergen absolut. Dengan demikian ketika {N\rightarrow \infty} barisan {\sum_{n=1}^N B_n(a_n-a_{n+1})} konvergen dan kita simpulkan bahwa {\displaystyle \sum_{n=1}^\infty a_nb_n} konvergen. \Box

Deret Harmonik dan Pecahan Mesir

Pecahan berbentuk {\dfrac{1}{n}} dengan {n} bilangan asli kita sebut sebagai pecahan satuan. Apakah penjumlahan sejumlah pecahan satuan yang pertama dapat menghasilkan bilangan bulat? Dengan kata lain, adakah bilangan asli {N} sehingga

\displaystyle H_N:=\frac11+\frac12+\frac13+\frac14+\cdots +\frac{1}{N-1}+\frac{1}{N}

merupakan bilangan bulat?

Ternyata hasilnya negatif, seperti tertulis dalam teorma berikut.

Teorema 1 Untuk setiap bilangan asli {N} bilangan {H_N} tidak pernah merupakan bilangan bulat.

Proof: Andaikan {H_N} merupakan bilangan bulat untuk suatu bilangan asli {N}. Misalkan {k} adalah bilangan asli sehingga {2^k\leq N<2^{k+1}} (mengapa ada {k} yang demikian?). Kalikan {H_N} dengan {2^{k-1}} untuk mendapatkan

    \begin{align*} 2^{k-1}H_N&= 2^{k-1}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{2^k-1}+\frac{1}{2^k}+\frac{1}{2^k+1}+\cdots +\frac{1}{N}\right)\\ &=\frac{2^{k-1}}{1}+\frac{2^{k-2}}{1}+\frac{2^{k-1}}{3}+\cdots + \frac{2^{k-1}}{2^k-1}+\frac{1}{2}+\frac{2^{k-1}}{2^k+1}+\cdots +\frac{2^{k-1}}{N}. \end{align*}

Pindah ruaskan {2^{k-1}H_N} dan {\frac{1}{2}}, didapat

\displaystyle -\frac12=-\frac{2^{k-1}H_N}{1}+\left(\frac{2^{k-1}}{1}+\frac{2^{k-2}}{1}+\frac{2^{k-1}}{3}+\cdots + \frac{2^{k-1}}{2^k-1}\right)+\left(\frac{2^{k-1}}{2^k+1}+\cdots +\frac{2^{k-1}}{N}\right)

Masing-masing suku disebelah kanan merupakan bilangan rasional dalam bentuk yang paling sederhana dengan penyebut ganjil. Ketika mereka semua kita jumlahkan dan sederhanakan maka tetap diperoleh suatu bilangan rasional {\frac pq} dengan {q} ganjil. Akibatnya tidak mungkin {\frac{p}{q}=-\frac{1}{2}} (kontradiksi!). \Box

Pertanyaan berikutnya adalah bagaimana kalau kita tidak mensyaratkan pecahan satuannya harus berurutan? Apakah bisa kita menyatakan suatu bilangan bulat sebagai jumlahan pecahan-pecahan satuan yang berbeda?

Definisi 2 Suatu bilangan rasional disebut pecahan Mesir jika ia dapat dinyatakan sebagai jumlahan pecahan-pecahan satuan yang berbeda.

Ternyata dapat dibuktikan bahwa tidak hanya ada bilangan bulat yang merupakan pecahan Mesir, tapi lebih kuat dari itu, setiap bilangan rasional positif merupakan pecahan Mesir. Untuk membuktikannya pertama kita perlukan lema berikut.

Lema 3 Misalkan {\frac{p}{q}} bilangan rasional dengan {\frac{1}{s}\leq \frac{p}{q}< \frac{1}{s-1}} untuk suatu bilangan asli {s}. Maka {\frac{p}{q}} merupakan pecahan Mesir.

Proof: Perhatikan bahwa

\displaystyle \frac{p}{q}-\frac{1}{s}=\frac{ps-q}{qs}

Karena {\frac{p}{q}<\frac{1}{s-1}}, maka {p(s-1)<q\Leftrightarrow ps-q<p}. Tulis {p_1=p(s-1)} dan {q_1=qs}, maka {\frac{p}{q}-\frac{1}{s}=\frac{p_1}{q_1}} dengan {p_1<p}. Jika {p_1=0}, maka {\frac{p}{q}=\frac{1}{s}} dan kita selesai. Jika {p_1>0}, maka terdapat bilangan asli {s_1 >s} (mengapa?) sehingga {\frac{1}{s_1}<\frac{p_1}{q_1}<\frac{1}{s_1-1}}. Dengan cara serupa kita dapatkan {\frac{p_1}{q_1}-\frac{1}{s_1}=\frac{p_2}{q_2}} dengan {p>p_1>p_2}. Jika kita lakukan terus menerus maka akan diperoleh barisan bilangan asli yang turun {p>p_1>p_2>\ldots} yang tentunya pada suatu saat kita peroleh {p_{n+1}=0}. Ketika hal ini terjadi maka kita peroleh

\displaystyle \frac{p}{q}-\frac{1}{s}-\frac{1}{s_1}-\cdots -\frac{1}{s_{n}}=\frac{p_{n+1}}{q_{n+1}}=0.

Jadi {\frac{p}{q}} merupakan pecahan mesir. \Box

Sekarang kita siap membuktikan hasil utama kita.

Teorema 4 Setiap bilangan rasional positif merupakan pecahan Mesir.

Proof: Ambil sebarang bilangan rasional positif {\frac{u}{v}}. Ingat bahwa deret harmonik {\displaystyle \sum_{n=1}^\infty \frac{1}{n}} merupakan deret yang divergen. Jika {\displaystyle H_N=\sum_{n=1}^N \frac{1}{n}}, maka terdapat suatu {m} sehingga {H_m\leq \frac{u}{v}<H_{m+1}=H_m+\frac{1}{m+1}}. Akibatnya {0<\frac{u}{v}-H_m<\frac{1}{m+1}<1} dan tentunya terdapat {s>m+1} asli sehingga {\frac{1}{s}\leq \frac{u}{v}-H_m<\frac{1}{s-1}}. Dengan menggunakan lema di atas, kita peroleh

\displaystyle \frac{u}{v}-H_m=\frac{1}{s}+\frac{1}{s_1}+\cdots +\frac{1}{s_n}

dengan {m+1<s<s_1<\cdots<s_n}. Dengan demikian

\displaystyle \frac{u}{v}=H_m+\frac{1}{s}+\frac{1}{s_1}+\cdots+\frac{1}{s_n}

merupakan pecahan Mesir. \Box

Kekonvergenan Suatu Deret

Salah satu soal menarik pada soal tutorial kalkulus 2A adalah tentang kekonvergenan deret

\displaystyle \sum_{n=2}^\infty \frac{1}{(\ln n)^4}.

Untuk dapat memahami intuisi penyelesaian di atas kita akan melakukan lomba marathon yang pesertanya adalah fungsi-fungsi {e^x,x^k} dan {\ln x}. Ini merupakan lomba marathon dalam artian kita hanya peduli untuk {x} yang cukup besar.

Untuk dapat membandingkan, misalnya siapa diantara {ê^x} dan {x^k} yang menang kita bisa hitung nilai {\displaystyle \lim_{x\rightarrow\infty}\frac{x^k}{e^x}}. Perhatikan bahwa ini merupakan bentuk tak tentu {\frac{\infty}{\infty}} yang mengakibatkan kita bisa melakukan aturan L’Hospital. t Perhatikan bahwa setiap kali kita menurunkan pembilang, derajatnya berkurang satu, akan tetapi penyebutnya meskipun diturunkan tetap {e^x} seperti semula. Hal ini menunjukkan bahwa pada akhirnya nilai limit di atas adalah nol. Ini berarti untuk {x} yang cukup besar {e^x} lebih cepat dibanding {x^k} untuk {k} yang manapun (meski {k=10^6} misalnya).

Dengan melakukan pendekatan yang sama kita bisa tunjukkan bahwa {x^k} eventually akan lebih cepat dibanding {\ln x} meski {k} nya kecil, misalnya {0<k<1}.

Apa untungnya pengamatan di atas? Dari pengamatan di atas kita tahu bahwa

\displaystyle n^{1/4} >\ln n \Leftrightarrow n> (\ln n)^4\Leftrightarrow \frac{1}{n}<\frac{1}{(\ln n)^4}

untuk {n} yang cukup besar. Karena deret {\sum_{n=2}^\infty \frac{1}{n}} merupakan deret yang divergen (deret harmonik), maka menurut uji banding langsung, demikian pula deret {\displaystyle \sum_{i=2}^n \frac{1}{(\ln n)^4}} merupakan deret yang divergen.

Agar buktinya lebih ketat, kita masih berhutang untuk menunjukkan bahwa

\displaystyle  n^{1/4}-\ln n > 0 \ \ \ \ \ (1)

untuk {n} yang besar. Pertanyaannya untuk {n} yang mana? Saya serahkan kepada pembaca untuk membuktikan bahwa ketaksamaan di atas benar untuk {n\geq e^{16}}. Perlu di ingat juga bilangan {e^{16}} ini tidak benar-benar penting dalam menentukan kedivergenan deret kita dan boleh kita ganti dengan bilangan lain yang mengakibatkan ketaksamaan 1 benar.

Aturan Perkalian

Metode standard yang dipergunakan untuk menunjukkan aturan perkalian dalam penghitungan turunan adalah dengan menggunakan definisi turunan yang diterapkan kepada fungsi f(x)g(x). Menurut definisi

    \begin{align*} (fg)'(x)=\lim_{h\to 0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}. \end{align*}

Selanjutnya kita gunakan trik mengurangkan dan menambahkan f(x+h)g(x) kepada pembilang sehingga kita bisa menuliskan

    \begin{align*} \lim_{h\to 0} &\frac{f(x+h)\left(g(x+h)-g(x)\right)+ g(x)\left(g(x+h)-g(x)\right)}{h} \end{align*}

yang kemudian dipecah menjadi dua limit yang setelah dihitung limitnya menghasilkan f(x)g'(x)+f'(x)g(x).

Berikut adalah cara lain untuk mendapatkan aturan perkalian tersebut dengan pertama-tama meninjau kasus khusus dari aturan perkalian dimana kedua fungsi yang dikalikan merupakan fungsi yang sama.

Lemma
Jika u(x) punya turunan maka (u^2)'(x)=2u(x)u'(x).

Bukti.

    \begin{align*} (u^2)'(x)&=\lim_{h\to 0} \frac{u^2(x+h)-u^2(x)}{h}\\&=\lim_{h\to 0}\left(u(x+h)+u(x)\right)\frac{u(x+h)-u(x)}{h}\\ &=2u(x)u'(x). \quad \box \end{align*}

Sekarang kita kembali ingin menghasilkan turunan dari perkalian f(x)g(x). Kita akan menurunkan (f+g)^2 dalam dua cara. Pertama menurut lemma kita peroleh

    \[ \left((f+g)^2\right)'=2(f+g)(f'+g')=2(ff'+gg'+fg'+gf'). \]

Sekarang dengan mengekspansi (f+g)^2 terlebih dahulu menjadi f^2+g^2+2fg. Maka

    \[ \left((f+g)^2\right)'=(f^2+g^2+2fg)'=2ff'+2gg'+2(fg)'. \]

Dengan membadingkan kedua ekspresi di atas diperoleh (fg)'=fg'+f'g.

Cara penurunan aturan perkalian diatas diambil dari artikel pendek berikut.

Rendered by QuickLaTeX.com